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synopsis 
A new method for calculating and correcting molecular weight distributions of poly- 

mer samples from GPC chromatograms is presented. The integral equation which 
relates the true molecular weight distribution of polymer sample to  the chromatogram 
is reformulated into an equivalent variational problem of quadratic functional. The 
method of steepest descent in the function space is then applied to the minimization 
problem to obtain the true molecular weight distribution. This method is efficient and 
reduces some of the oscillation problems encountered in the previous methods. Ex- 
amples are given. 

INTRODUCTION 

In  recent years, gel permeation chromatography (GPC) has found wide- 
spread applications in determining the molecular weight distributions and 
molecular weights of polymers. The experimental chromatogram obtained 
from a GPC unit is a continuous curve of relative concentration versus elu- 
tion volume. By means of a calibration curve which relates elution volume 
to molecular weight, a differential molecular weight distribution curve can 
be generated. It is well known, however, that the experimental GPC 
chromatogram does not represent the true molecular weight distribution 
unless the resolution is perfect and ideal. A technique for correcting the 
chromatograms for imperfect resolution was first proposed by T ~ n g . ' - ~  
Subsequently, other methods have been proposed by Smith14 Hess and 
K r ~ t z , ~  Pickett, Cantow and Johnson16 Pierce and Armonas' and Duerksen 
and Hamielec.8 Of the various methods, Tung's method has been used 
most frequently and is mathematically rigorous. Recently, it has been 
pointed out by Balke and Hamielecg and by Pickett et al.,6 that the major 
difficulty encountered in npplying the various techniques is the appearance 
of oscillations in both the corrected chrornatograrus arid differential mo- 
lecular weight distributions. The question of wlicther these oscillatioris 
result from the true attributes of the molecular weight distributions of the 
polymer or are errors which arise during the mathematical and computa- 
tional treatment has not yet been resolved. In  this paper, we present a 
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new method for correcting the molecular weight distributions due to im- 
perfect resolution. This method resolves most of the oscillation problems 
encountered in the previous methods and will be shown to be direct and 
very efficient. 

Theory 
For a large number of components, the distribution of molecular weight 

of polymers may be considered as continuous and the true molecular weight 
distribution function w(y) is then related to the chromatogram f(x) by 

where x and y are eluent volumes and a and b the initial and the final 
eluent volumes, respectively, of the chromatogram. The function K(x,y) is 
the kernel of the integral equation and can be looked upon as a unit im- 
pulse response of chromatogram at  y as is easily verified by the operation 

f (4  = s.” K(z,UG - Y)d5 = KhY) (’4 

a < y < b  

where a(( - y) is the delta function. Thus, K(x,y) can be completely 
characterized by a set of impulse testings. We introduce an integral opera- 
tor A to describe eq. (1) : 

Then eq. (1) is 

A w = f  (4) 
The operator A physically represents a GPC operation on the polymer 
sample. Therefore, without loss of generality, we can assume that 
KeS2 [a,b] where Cz [a,b] is the space of square integrable functions over 
[a,b]. Furthermore, from the physical argument we can also assume that 
the functions f and w are nonnegative and real-valued. Consequently, the 
operator A is positive definite over the field of definition off and w (this 
follows since physically K(x,y) is positive over [a,b]). The molecular 
weight correction can now be simply stated: knowing A and f, find w. 
The theoretical solution is then w = A-lf. In practice, however, the in- 
verse operator A-’ may not be immediately available. 

At this point, some definitions for use in the subsequent development are 
necessary. It is not our interit,ioii to delve into the details of mathematical 
rigor at this point. h a t e d ,  we shall resort to physical arguments when- 
ever necessary and conveuient. We define A 2  by 

A2w = A(Aw)  = K ( x , s ) ~ s  K(s,y)w(y)dy (5)  Lb Lb 
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Then it follows inductively that 

A"w = A(Am-lw) = lb K(z,s)ds lb K(s,y)(Am-2wfdy (6) 

m = 2 , 3 ,  . . .  
Physically A" represents the application of m-tuple GPC operations in 
series. We define the inner product in Z2 [a,b] by 

b 

(w,v) = s, w(z)v(z)dz (7) 

The norm llwll in this space is then (zL',~)' '~ where 
* b  

(w,w) = J w2(z)dz 
a 

In connection with the operator A,  we define the adjoint operator A *  by 

A*w = (9) 

The inductive definition of A*" is obvious in view of eq. (6). We further 
assume that the kernel is symmetrical, i.e., K(z,y) = K(y,s). Tung's 
Gaussian distribution is a good example of such cases. Then A is self- 
adjoint as is evident from the obvious operation: 

(10) 

First, it can now be observed that the solution to eq. (4) is unique. In- 
deed, if ZD and 6.1 are two solutions of eq. (4), such that A@ = f and AW = 
f; then by subtraction A(m - z5) = 0 and consequently the inner product 
( A ( @  - z3), @ - z5) = 0. This implies that fb - 6.I = 0 or 7Z = 6.I since 
A is positive definite. Second, we can now convert eq. (4) into an equiv- 
alent variational problem (Mikhlin'O). This can be stated as follows: 
eq. (4) has a solution if and only if the functional 

F(w) = (Aw,w) - 2(w,f)  (11) 

attains its minimum value with respect to w. Here (Aw,w) and (w,f) are 
the expressions similar to the definitions in eqs. (7) and (10). To see the 
validity of the statement, let wo be the solution of eq. (1) so that Awo = f. 
The substitution of this into eq. (11) gives 

F(w) = (Aw,w) - 2(w,Awo) 

= ( A ( w  - W O ) ,  w - W O )  - (Awo,wo) (12) 
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Thus it is apparent that w = wo minimizes F(w) .  
F ( w )  attains its minimum value at wo. 
the domain of operator A. 

Conversely, suppose that 
Lct 7 bc an arbitrary function in 

(13) 

( 14) 

Then for an arbitrary rcal number h 

F(tW" + XV) 2 F(cc0) 

h2(Av,d + N A w o  - f,d 2 0 

The computation of inequality from eq. (1  1) reduces eq. (13) to 

which is a nonnegative quadratic in X. 
nonpositive: 

Then the discriminant must be 

(Awe - f,d2 I 0 (15) 

A w o - f = O  (16) 

which is possible only if 

We shall now solve eq. (11) by the method of steepest descent in the 
Choose w1 as the first approxi- 

If Awl = f then w1 is the solution (but this seems 
If not, see Awl - f =  vl and we shall try to obtain 

In order for w2 
Thus 

This can 

function space (Kantorovich,ll Birman12). 
mate solution of eq. (4). 
extremely unlikely). 
a better approximate solution in the form W P  = WI + e v ~ .  
t o  be qualified as a better solution, F(w1 + evl) 5 F(w1) must hold. 
select a number E such that F(w1 + evl) assumes the least value. 
be accomplished by computing 

F(w + 4 = (A(wi + ~ v I ) ,  WI + €81) - ~ ( W I  + evi,f) 

= F(wi) + ~ ~ [ ( A w I , v I )  - df ,~ i ) I  + C2(Avi,Vi) (17) 
and then setting b [F(wl+ EVI) ]/be = 0 to obtain 

in view of the identity (vl,vl) = Ilvl))2. 
proved solutions will then be 

The sequence of (n + 1)th im- 

with 
V ,  = Aw, - f (n = 1,2,. . .) 

where n represents the number of iterations. 
first-order method. 

We shall call this scheme the 

We can now combine 2 single steps into one. Two single steps are 
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and then 
203 = w1 + ( € 1  + 4s + r1ezAv1 

This suggests one to seek the solution scheme in the form 

W,+I  = wn + a x v n  + AAvn (23) 

By following the similar procedure for the first-order method, we obtain 
two simultaneous algebraic equations for a, and &: 

(Av,,v,)an + (Av,,Av,)P, = - (vn,v,) 
(Av,,Av,)a, + (A2v,,Avn)Bn = - (Avn,vn) 

(24) 

from which we get 

and 

We shall refer to this scheme as the second-order method. 
From a purely computational point of view, we have to evaluate Awn, 

v,, Av,, (v,,~,), and (Av , ,~ , )  twice in the first-order method and Aw,, v,, 
Av,, (v,,~,), (Av , ,~ , ) ,  A2v,, (Av,,Av,) and (A2v,,Av,) once in the second- 
order method to have an equivalent computation. This means that the 
second-order method uses two less number of computations than the first- 
order method. However, the advantage of the second-order method is 
quite considerable when the convergence consideration is further taken into 
account. Thus, the second-order method requires far less than half as 
many iterations as compared to the first-order method. Therefore, the 
second-order method is preferred. The iteration is usually terminated if 
(v,,v,) becomes smaller than a prescribed small number. 

Application to Gaussian Distribution 

We now apply the theory for the case 

where the resolution factor h is 1/2u2 in a Gaussian distribution with vari- 
ance u2. With this distribution, 
the actual molecular weight distribution of a sample represented by the 
solid line in Figure 1 would give rise to a chromatogram f ( x )  indicated by 
the dashed line in Figure 1 when h = 1.4. From this chromatogram, the 
second-order method was used to recover the true molecular weight dis- 
tribution w(x) .  The recovered w(x) shown by a set of dots coincides very 
well with the actual molecular weight distribution as shown in Figure 1. 

This is the distribution used by Tung. 
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Fig. 2. h = 1.50. Key: , actual w; - - -, chromatogram f; 0, recovered w. 
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curate. The second-order method was again used here and w(x) was ac- 
curately recovered after 2 iterations. The value of h in Figure 2 was 1.5. 
In both cases, even after one iteration, the solution was very close to the 
actual molecular weight distribution. 

Chromatogram Data Smoothing 

In spite of the power and efficiency of the method of steepest descent in 
the function space, if one attempts to use it on experimental chroma- 
tograms a difficulty of oscillation would arise. A careful study reveals that 
any method of molecular weight correction is extremely sensitive to possible 
errors or inaccuracy in the raw chromatogram data such that the reading of 
5 - 6 significant figures is required. Since it is impossible to read an ex- 
perimental chromatogram to within 5 significant figures a mathematical 
technique must be developed to compensate for the errors resulting from 
the evaluation of raw data. In  Tung’s technique, this is implicitly accom- 
plished by the Hermite polynomial fitting which in fact smoothes the raw 
data. 

There are a number of available methods to smooth the chromatogram 
data. The entire set of data may be fitted into a polynomial by the method 
of least squares. However, if the chromatogram data are accurate up to 
*a, then the method must be such that the smoothed chromatogram 
should agree with the original chromatogram data within *a. Based on 
this criterion, a convenient and simple way of smoothing data is by the 
seven-point cubic method13 which uses 

where f (n)  is the smoothed chromatogram value at  point n, f(k) the raw 
chromatogram reading at  point k ,  and a, the integer weighting factors. 
If n is any one of the first three or the last three points, i is then taken as 
the first seven or the last seven points with appropriate weighting factors. 
This method circumvents the disadvantage of the polynomial fitting on the 
entire set, in which if too few terms are used an inaccuracy results and if 
too many terms are used oscillations occur (which is again an inaccuracy). 
When this method of smoothing is applied prior to the application of the 
second-order method, an excellent correction results. 

At this point, it should be pointed out that if two polymer samples differ 
in their constituents by only a small amount then the chromatograms of 
these two samples differ by only a small amount. However, the converse 
is theoretically true but experimentally false in view of the uncertainty in 
chromatogram reading accuracy. Two polymer samples of different 
molecular weight distributions may give rise to visually similar chroma- 
tograms as is demonstrated in Figure 3. This poses some doubt on the 
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validity of the corrected molecular weight distribution based on the least 
square polynomial fitting on the entire set of data, especially when the 
resolution factor is small. Thus a critcriori must be established as to when 
one can accept the corrccted molecular weight distribution obtained from 
the chromatogram as the most probable one. It was found that a suitable 

Elution Volume 

Fig. 3. h = 0.8. Key: -, distribution wl; -.-.-, distribution WZ; . * *, chroma- 
tograms f. 

criterion is to reject a recovered molecular weight distribution if it cannot 
give a chromatogram which agrees with the observed one within a reason- 
ably acceptable range of accuracy. Thus, if one can read an experimental 
chromatogram within 1% accuracy, then the regenerated chromatogram 
should agree with the originally observed one within 1%. 

Application to Experimental Chromatogram 
A computation has been carried out on an experimental chromatogram 

obtained from a Waters Model 200 GPC unit. The heights of the chroma- 
togram could be read to within 1% accuracy at  quarter eluent volume 
counts. The raw chromatogram data were smoothed by the seven-point 
cubic method and the second-order method wm used. After 2 iterations, 
there was no further improvement in the solution. The result is plotted in 
Figure 4. The Gaussian distribution was assumed and the value of h 
was 1.40. The resolution factor h was determined experimentally by the 
reverse flow technique proposed by T ~ n g . ~  Calibration of column resolu- 
tion was determined using nine polystyrene standard samples obtained from 
Waters Associates and the Pressure Chemical Company, Pittsburgh, Pa. 
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Elution Volume 

Fig. 4. h = 1.40. Key: - - -, chromatogram f; -, recovered w. 

Corrections for Low h 

The second-order method applied to smoothed chromatograms converges 
very well in the range h > 1 for the Gaussian distribution. For h 5 1, the 
convergence of the method merits special consideration. This is in the 
range where the molecular weight distribution correction is significant but 
the previous methods do not give satisfactory results. Suppose that a 
sample of molecular weight distribution W ( Z )  is passed through a GPC unit 
which would give a Gaussian distribution for a mono-dispersed sample. 
To demonstrate the power of the present method a complex W ( X )  as indi- 
cated by the solid line in Figure 5 is deliberately chosen. Depending on 
the values of h, different chromatograms would result. If h = 1.0, 0.6, 
and 0.2, the chromatograms are the dashed lines in Figures 5 ,  6, and 7, 
respectively. From these chromatograms, the true molecular weight dis- 
tribution W ( X )  is recovered by the second-order method. When h = 1.0, 
the recovered molecular weight distribution is plotted by the set of dots in 
Figure 5. These dots are obtained after only 2 iterations and the recovery 
is excellent. The recovery by Tung’s method is also plotted by the set of 
given symbols. For h = 0.6, the results are 
plotted in Figure 6. The recovery by the present method is quite ade- 
quate. Figure 7 
shows the result for h = 0.2. For this case, even if the recovered distribu- 
tion does not exhibit the existence of two peaks, it approximates the true 
molecular weight distribution. On the other hand, Tung’s method gives 
oscillations beyond the scale of the figure. This shows that even for a 
small h value, the present method can efficiently be used to correct the 

The result is fairly good. 

However, Tung’s method gives oscillations for this case. 



1468 

0: 

E 
0) ._ 
2 

w 
i! 
b 0.1 

0 

.- - 

z 

K. CHANG AND R. HUANG 

Elution Volume 

Fig. 5. h = 1.0. Key: - , actual w; ---, chromatogram f; 0, w from present 
method; A, w from Tung’s method. 

Elution Volume 

A, w from Tung’s method. 
Fig. 6. h = 0.6. Key: -, actual w; - - -, chromatogram f; 0, w from present method; 
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Elution Volume 
Fig. 7. h = 0.2. Key: -, actual w; ---, chromatogram, f; 0, w from present 

method. 

molecular weight distribution of chromatograms. The computing time 
needed for each case was again approximately 5 sec on IBM 360 Model 75 
whereas with Tung's method it was about 9 sec on the same model. 

Conclusion 
We have presented a new method of molecular weight distribution cor- 

rection of GPC. The original mathematical problem posed has been 
converted into an equivalent minimization problem in the function space 
and the steepest descent technique based on the second-order method has 
been used. The technique is efficient and only one or two iterations are 
adequate to obtain the true molecular weight distribution of the polymer 
sample.* Computations have been carried out for the cases of Gaussian 
distribution. Even when the resolution of GPC was poor (low values of h) 
the corrections were satisfactory. The method has the additional ad- 
vantage of extension to other distributions because it works equally well 
for any symmetrical distribution. Once the true molecular weight dis- 
tribution function hat? been obtained, the average molecular weights can 
cnnily be computed. 

The author$ wish lo thank Mi-. IT. K. Leoiig for his assistance in programming and 
romputing the GPC data and the Univerdty of Waterloo Computing Centre for corn- 
putitig time. Fiiiaiicial aid from the Nat ional Itwearch Couiicil of Canada is gratefully 
acknowledged. 

* The computer program is available upon request from the authors. 
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Nomenclature 
= integral operator 
= inverse of A 
= adjoint operator 
= initial eluent volume 
= weighting factor 
= final eluent volume 
= minimizing functional 
= chromatogram 
= smoothed f value at  point rL 
= raw f value at  point k 
= resolution factor in Gaussian distribution 
= kernel of A 
= A w - f  
= Awn - f 
= molecular weight distribution function 
= solution of A w  = f 
= nth approximate solution of w (n = 1,2,. . .) 
= eluent volume 
= eluent volume 

Greek Letters 

a n  

P n  

6 = error magnitude 
6(( - 11) = delta function 
e1e1,e2 = constant 
tl = function 
x = real number 
t: = variable 
U2 = variance of Gaussian distribution 

= constant given by eq. (25) 
= constant given by eq. (25) 

Symbols 

II II = norm 
( , ) = inner product 
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